Short Term Renewable Energy Forecasting Based on Feed Forward Back Propagation Neural Network Strategy

Author:

H R Dhanalaxmi1,G S Anitha2,A V Sunil Kumar3

Affiliation:

1. Research scholar R.V College of Engineering, Bengaluru, Karnataka, India

2. Dept. of EEE, R.V college of Engineering, Bengaluru, Karnataka, India

3. Dept. of EEE, Acharya Institute of Technology, India

Abstract

The fundamental inputs used as a renewable energy source are wind speed and solar radiation. Both parameters are very nonlinear and depending on their surroundings. As a result, reliable prediction of these characteristics is required for usage in a variety of agricultural, industrial, transportation, and environmental applications since they reduce greenhouse gas emissions and are environmentally benign. In this study, we used a Feed Forward Back Propagation Neural Network (FFBPN) technique to predict proper data such as temperature, relative moisture, sun radiations, rain, and wind speed. The FFBPN will be trained in such a way that it can conduct hybrid forecasting with little changes to the programming codes, ranging from hourly (short term forecasting) to daily forecasting (medium term forecasting). This feature is one of the significant improvements, showing the suggested hybrid renewable energy forecasting system's high robustness. Because the hybrid forecasting system is a unique approach, the system's accuracy will be determined by comparing the findings to the corresponding values of the persistent model, a stand-alone forecasting model. Finally, the completely created system package could be sold and/or used in future research initiatives to help researcher’s analyses, validate, and illustrate their models across a variety of areas.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3