Problems of Early Learning to Program. How to Bridge the Gap Between Pictographic and Textual Programming Styles

Author:

D.B Agliamutdinova1,N.O. Besshaposhnikov1,A.G. Kushnirenko1,A.G. Leonov1,M.V. Raiko1

Affiliation:

1. Federal Research Center “Scientific Research Institute for System Analysis of the Russian Academy of Sciences,” 36-1 Nakhimovsky Prosp., Moscow 117218, Russian Federation

Abstract

Around the world, the “coding is the new literacy” thesis is beginning to be shared by an increasing number of decision-makers inside and outside national education systems. This leads to the inclusion of courses on information technology, including programming, in the curricula of school and early childhood education in various countries. In Russia, with its centralized education system, the amount of programming skills that a 9th grade graduate must master was established by the federal standard in mid-2021 and includes a certain set of initial programming skills that a student must be able to demonstrate by choosing one of the 6 full-text programming languages prescribed by the standard. Our experience shows that today the programming skills provided for by the specified standard can be successfully mastered by all primary school graduates (age 11-12), and we predict that the problem of early compulsory teaching in programming will be posed by Russian legislators and solved by the Russian education system in the near future. The main thesis of this article is that the best way to systematically teach the basics of programming to beginners of all ages, including elementary school students, is to consistently use the three approaches - icon-based, block-based, and text-based - provided that there is a methodological and technological continuity of software environments that support these three approaches. This continuity can be achieved by creating a consistent family of multiple learning environments. The article describes the experience of developing and using such a family of three software environments for the system of preschool and primary education in Russia, as well as for the system of teacher training in universities.

Publisher

North Atlantic University Union (NAUN)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ERROR-FREE 2D PICTOGRAMMIC SYNTAX IN A PROGRAMMING LEARNING ENVIRONMENT FOR PRESCHOOL CHILDREN;Доклады Российской академии наук. Математика, информатика, процессы управления;2023-05-01

2. Error-Free 2d Pictogrammic Syntax in a Programming Learning Environment for Preschool Children;Software Engineering Application in Systems Design;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3