A Robust and Efficient Fault-Resilient RadHard ADPLL

Author:

Prasad Varsha1,Prasad Sandya1

Affiliation:

1. Dept of ECE,NMIT

Abstract

The high pace emergence in semiconductor technologies and associated application demands have revitalized industries to explore power efficient, stable and fault tolerant digital communication solutions, particularly for time critical applications operating at higher frequency ranges. Thus strengthening low cost CMOS digital design with Radiation Hardened by Design (RHBD) approach can be of paramount significance compared against the high cost Radiation Hard by Process (RHBP) approach. With this motivation, in this paper a novel and robust All-Digital-Phase Locked Loop (ADPLL) design has been developed for frequency synthesis. Our ADPLL design model encompasses multiple novelties and contributions including Feedback-Divider-Less-Counter (FDLC) based ADPLL, predictive phase-frequency detection (PFD), enhanced Time to Digital Converter (TDC) to detect next-edge occurrence of the reference clock that reduces locking period and complexity. The predictive PFD applies a phase-prediction scheme that delays the clock-edges of the reference frequency with a calibrated amount that it always aligned towards the expected frequency clock edge. It makes TDC to be narrow enough to cover the reference and oscillator jitter. Our proposed ADPLL design applied a narrow range converter (TDC) that assist phase-error prediction, correction and phase detection. The reference clock delay facilitates accurate timing relationship estimation with the variable frequency and hence performs retuning of the variable clock to reduce locking period and reduce noise. The ADPLL design has exhibited satisfactory performance for the frequency synthesis with reference frequency of 20MHz and the synthesis frequency of 2.4 GHz meeting radiation hardened features. The simulation results has revealed that the proposed Rad Hard ADPLL design can be a potential solution for space communication systems by maintaining low jitter of 340ps and power consumption of 371.7mW, as the narrow range TDC designed can detect sample radiation induced impulse noise of 20ns, 1mV and correct it.

Publisher

North Atlantic University Union (NAUN)

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3