Application of a new fuzzy logic model known as "SMRGT" for estimating flow coefficient rate

Author:

GÜNAL Ayşe Yeter1ORCID,MEHDİ Ruya1ORCID

Affiliation:

1. GAZIANTEP UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF CIVIL ENGINEERING (ENGLISH), CIVIL ENGINEERING PR. (ENGLISH)

Abstract

Since we all have our own set of limitations when it comes to perceiving the world and reasoning profoundly, we are constantly met with uncertainty as a result of a lack of information (lexical impression, incompleteness), as well as specific measurement inaccuracies. It has been found that uncertainty, which shows up as ambiguity, is the root cause of complexity, which is everywhere in the real world. Most of the uncertainty in civil engineering systems comes from the fact that the constraints (parameters) are hard to understand and are described in a vague way. The ambiguity comes from a number of sources, including physical arbitrariness, statistical uncertainty due to using limited information to estimate these characteristics, and model uncertainty due to using overly simplified methods and idealized depictions of actual performances. Thus, it is better to combine fuzzy set theory and fuzzy logic. Fuzzy logic is well-suited to modelling the indeterminacy and ambiguity that results from multiple factors and a lack of data. In order to improve upon a previous predictive model, this paper uses a smart model built on a fuzzy logic system (FLS). Precipitation, temperature, humidity, slope, and land use data were all taken into account as input variables in the fuzzy model. Toprak's original explanation of the simple membership function and fuzzy rules generation technique (SMRGT) was based on the fuzzy-Mamdani methodology and used the flow coefficient as its output. The model's results were compared to available data. The following factors were considered in the comparison: 1) The maximum, minimum, mean, standard deviation, skewness, variation, and correlation coefficients are the seven statistical parameters. 2) Four types of error criteria: Mean Absolute Relative Error (MARE), Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). 3) Scatter diagram.

Publisher

Turkish Journal of Engineering

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3