Affiliation:
1. University of Utah, Salt Lake City, UT, USA
Abstract
Rapid cycle DNA amplification was continuously monitored by three different fluorescence techniques. Fluorescence was monitored by (i) the double-strand-specific dye SYBR® Green I, (ii) a decrease in fluorescein quenching by rhodamine after exonuclease cleavage of a dual-labeled hydrolysis probe and (iii) resonance energy transfer of fluorescein to Cy5TM by adjacent hybridization probes. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy number. The sensitivity of SYBRGreen I detection is limited by nonspecific product formation. Use of a single exonuclease hydrolysis probe or two adjacent hybridization probes offers increasing levels of specificity. In contrast to fluorescence measurement once per cycle, continuous monitoring throughout each cycle monitors the temperature dependence of fluorescence. The cumulative, irreversible signal of hydrolysis probes can be distinguished easily from the temperature-dependent, reversible signal of hybridization probes. By using SYBR Green I, product denaturation, annealing and extension can be followed within each cycle. Substantial product-to-product annealing occurs during later amplification cycles, suggesting that product annealing is a major cause of the plateau effect. Continuous within-cycle monitoring allows rapid optimization of amplification conditions and should be particularly useful in developing new, standardized clinical assays.
Subject
General Biochemistry, Genetics and Molecular Biology,Biotechnology
Cited by
1111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献