Simultaneous Chain-Forming and Generalization of Road Networks

Author:

Wenzel Susanne,Bulatov Dimitri

Abstract

Streets are essential entities of urban terrain and their automatic extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological, and semantic aspects. Given a binary image representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. Thereby, we aim at a fusion of raw segments to longer chains which better match to the intuitive perception of what a street is. We propose a two-step approach for simultaneous chain-forming and generalization. First, we obtain an over-segmentation of the raw polylines. Then, a model selection approach is applied to decide whether two neighboring segments should be fused to a new geometric entity. For this purpose, we propose an iterative greedy optimization procedure in order to find a strong minimum of a cost function based on a Bayesian information criterion. Starting at the given initial raw segments, we thus can obtain a set of chains describing long alleys and important roundabouts. Within the procedure, topological attributes, such as junctions and neighborhood structures, are consistently updated, in a way that for the greedy optimization procedure, accuracy, model complexity, and topology are considered simultaneously. The results on two challenging datasets indicate the benefits of the proposed procedure and provide ideas for future work.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RNGDet: Road Network Graph Detection by Transformer in Aerial Images;IEEE Transactions on Geoscience and Remote Sensing;2022

2. Structure-aware completion of photogrammetric meshes in urban road environment;ISPRS Journal of Photogrammetry and Remote Sensing;2021-05

3. Identifying Complex Junctions in a Road Network;ISPRS International Journal of Geo-Information;2020-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3