Author:
Wenzel Susanne,Bulatov Dimitri
Abstract
Streets are essential entities of urban terrain and their automatic extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological, and semantic aspects. Given a binary image representing the road class, centerlines of road segments are extracted
by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. Thereby, we aim at a fusion of raw segments to longer chains which better match
to the intuitive perception of what a street is. We propose a two-step approach for simultaneous chain-forming and generalization. First, we obtain an over-segmentation of the raw polylines. Then, a model selection approach is applied to decide whether two neighboring segments should be fused
to a new geometric entity. For this purpose, we propose an iterative greedy optimization procedure in order to find a strong minimum of a cost function based on a Bayesian information criterion. Starting at the given initial raw segments, we thus can obtain a set of chains describing long
alleys and important roundabouts. Within the procedure, topological attributes, such as junctions and neighborhood structures, are consistently updated, in a way that for the greedy optimization procedure, accuracy, model complexity, and topology are considered simultaneously. The results
on two challenging datasets indicate the benefits of the proposed procedure and provide ideas for future work.
Publisher
American Society for Photogrammetry and Remote Sensing
Subject
Computers in Earth Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献