Multi-Level Perceptual Network for Urban Building Extraction from High-Resolution Remote Sensing Images

Author:

Sun Yueming1,Chen Jinlong1,Huang Xiao2,Zhang Hongsheng3

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China

2. Department of Geosciences, University of Arkansas, Fayetteville, AR 72701

3. e Quanzhou Planning and Surveying Institute, School of Urban Design, Wuhan University, Quanzhou 350500, China

Abstract

Building extraction from high-resolution remote sensing images benefits various practical applications. However, automation of this process is challenging due to the variety of building surface coverings, complex spatial layouts, different types of structures, and tree occlusion. In this study, we propose a multilayer perception network for building extraction from high-resolution remote sensing images. By constructing parallel networks at different levels, the proposed network retains spatial information of varying feature resolutions and uses the parsing module to perceive the prominent features of buildings, thus enhancing the model's parsing ability to target scale changes and complex urban scenes. Further, a structure-guided loss function is constructed to optimize building extraction edges. Experiments on multi-source remote sensing data sets show that our proposed multi-level perception network presents a superior performance in building extraction tasks.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3