Synthesis and Sulfation with Sulfamic Acid of Aerogels Based on Birch-Wood and Cotton Celluloses

Author:

Kuznetsov Boris N.,

Abstract

Firstly, the structure and properties of cellulose aerogels produced from birch-wood and cottoncellulose and of, and products of their sulfation with a non-toxic sulfamic acid-urea complex in an environmentally safe solvent – a mixture of polyethylene glycol and sodium hydroxide are compared. Aerogels based on birch and cotton celluloses have similar values of apparent density (0,071–0,078 г/см3) and porosity (near 95 %). The products of sulfating of cellulose aerogels, in contrast to the originalbirch and cotton celluloses, are completely soluble in water. Their yield and degree of substitution are higher when using birch cellulose aerogel. By drying the dissolved products of sulfating of cellulose aerogels, smooth and transparent films were produced. The structure and morphology of the obtained aerogels and films were established by metods of scanning electron microscopy and atomic force microscopy. Birch cellulose aerogel (BCA) has a reticular microfibrillated porous structure, and cotton cellulose aerogel (CCA) has a spongy structure in which more cavities and cracks are observed than in the case of CCA. The surface of the film of sulfated BCA is formed by particles with a length 100–200 nm and width of 50–70 nm, and the films of sulfated CCA is formed by spherical particles with a diameter of 70–100 nm. The developed methods for obtaining sulfated cellulose films can be used in medicine to oreate anticoagulant coatings

Publisher

Siberian Federal University

Subject

General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3