Systems Modeling to Quantify Safety Risks in Early Drug Development: Using Bifurcation Analysis and Agent-Based Modeling as Examples

Author:

Pin Carmen,Collins Teresa,Gibbs Megan,Kimko Holly

Abstract

AbstractQuantitative Systems Toxicology (QST) models, recapitulating pharmacokinetics and mechanism of action together with the organic response at multiple levels of biological organization, can provide predictions on the magnitude of injury and recovery dynamics to support study design and decision-making during drug development. Here, we highlight the application of QST models to predict toxicities of cancer treatments, such as cytopenia(s) and gastrointestinal adverse effects, where narrow therapeutic indexes need to be actively managed. The importance of bifurcation analysis is demonstrated in QST models of hematologic toxicity to understand how different regions of the parameter space generate different behaviors following cancer treatment, which results in asymptotically stable predictions, yet highly irregular for specific schedules, or oscillating predictions of blood cell levels. In addition, an agent-based model of the intestinal crypt was used to simulate how the spatial location of the injury within the crypt affects the villus disruption severity. We discuss the value of QST modeling approaches to support drug development and how they align with technological advances impacting trial design including patient selection, dose/regimen selection, and ultimately patient safety.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3