Machine-Learning Assisted Screening of Correlated Covariates: Application to Clinical Data of Desipramine

Author:

Asiimwe Innocent GeraldORCID,S’fiso Ndzamba Bonginkosi,Mouksassi Samer,Pillai GoonaseelanORCID,Lombard AurelieORCID,Lang JenniferORCID

Abstract

Abstract Stepwise covariate modeling (SCM) has a high computational burden and can select the wrong covariates. Machine learning (ML) has been proposed as a screening tool to improve the efficiency of covariate selection, but little is known about how to apply ML on actual clinical data. First, we simulated datasets based on clinical data to compare the performance of various ML and traditional pharmacometrics (PMX) techniques with and without accounting for highly-correlated covariates. This simulation step identified the ML algorithm and the number of top covariates to select when using the actual clinical data. A previously developed desipramine population-pharmacokinetic model was used to simulate virtual subjects. Fifteen covariates were considered with four having an effect included. Based on the F1 score (an accuracy measure), ridge regression was the most accurate ML technique on 200 simulated datasets (F1 score = 0.475 ± 0.231), a performance which almost doubled when highly-correlated covariates were accounted for (F1 score = 0.860 ± 0.158). These performances were better than forwards selection with SCM (F1 score = 0.251 ± 0.274 and 0.499 ± 0.381 without/with correlations respectively). In terms of computational cost, ridge regression (0.42 ± 0.07 seconds/simulated dataset, 1 thread) was ~20,000 times faster than SCM (2.30 ± 2.29 hours, 15 threads). On the clinical dataset, prescreening with the selected ML algorithm reduced SCM runtime by 42.86% (from 1.75 to 1.00 days) and produced the same final model as SCM only. In conclusion, we have demonstrated that accounting for highly-correlated covariates improves ML prescreening accuracy. The choice of ML method and the proportion of important covariates (unknown a priori) can be guided by simulations. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3