Fast screening of covariates in population models empowered by machine learning

Author:

Sibieude Emeric,Khandelwal Akash,Hesthaven Jan S.,Girard Pascal,Terranova NadiaORCID

Abstract

AbstractOne of the objectives of Pharmacometry (PMX) population modeling is the identification of significant and clinically relevant relationships between parameters and covariates. Here, we demonstrate how this complex selection task could benefit from supervised learning algorithms using importance scores. We compare various classical methods with three machine learning (ML) methods applied to NONMEM empirical Bayes estimates: random forest, neural networks (NNs), and support vector regression (SVR). The performance of the ML models is assessed using receiver operating characteristic (ROC) curves. The F1 score, which measures test accuracy, is used to compare ML and PMX approaches. Methods are applied to different scenarios of covariate influence based on simulated pharmacokinetics data. ML achieved similar or better F1 scores than stepwise covariate modeling (SCM) and conditional sampling for stepwise approach based on correlation tests (COSSAC). Correlations between covariates and the number of false covariates does not affect the performance of any method, but effect size has an impact. Methods are not equivalent with respect to computational speed; SCM is 30 and 100-times slower than NN and SVR, respectively. The results are validated in an additional scenario involving 100 covariates. Taken together, the results indicate that ML methods can greatly increase the efficiency of population covariate model building in the case of large datasets or complex models that require long run-times. This can provide fast initial covariate screening, which can be followed by more conventional PMX approaches to assess the clinical relevance of selected covariates and build the final model.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3