Changes in speciated PM2.5 concentrations in Fresno, California, due to NOx reductions and variations in diurnal emission profiles by day of week

Author:

de Foy Benjamin1ORCID,Schauer James J.23

Affiliation:

1. Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO, US

2. University of Wisconsin – Madison, Environmental Chemistry and Technology Program, Madison, WI, US

3. Wisconsin State Laboratory of Hygiene, Madison, WI, US

Abstract

The San Joaquin Valley in California suffers from poor air quality due to a combination of local emissions and weak ventilation. Over the course of decades, there has been a concerted effort to control emissions from vehicles as well as from residential wood burning. A multiple linear regression model was used to evaluate the trends in air pollution over multiple time scales: by year, by season, by day of the week and by time of day. The model was applied to 18 years of measurements in Fresno including hourly mole fractions of NOx and concentrations of PM2.5; and daily measurements of speciated components of PM2.5. The analysis shows that there have been reductions in NOx, elemental carbon and ammonium nitrate of 4 to 6%/year. On weekends, NOx mole fractions are reduced by 15 to 30% due to fewer vehicle miles traveled and a smaller fraction of diesel traffic. These weekend reductions in NOx have not been accompanied by weekend reductions in PM2.5 however. In particular, elemental and organic carbon concentrations are higher on winter weekends. Analysis of diurnal profiles suggests that this is because of increased PM2.5 on Saturday and holiday evenings which are likely due to residential wood combustion. Furthermore, while organic carbon concentrations have decreased in the winter months, they have been variable but without a net decline in the summer, most likely as a result of forest fires offsetting other improvements in air quality. Fog was found to greatly enhance ammonium nitrate formation and was therefore associated with higher PM2.5 in the winter months. Overall the analysis shows that air quality controls have been effective at reducing NOx all year and PM2.5 in the winter, that continued reductions in emissions will further reduce pollutant concentrations, but that winter residential wood combustion and summer forest fires could offset some of the gains obtained.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3