Quantifying anomalies of air pollutants in 9 U.S. cities during 2020 due to COVID-19 lockdowns and wildfires based on decadal trends

Author:

Peischl Jeff12,Aikin Kenneth C.12,McDonald Brian C.2,Harkins Colin12,Middlebrook Ann M.2,Langford Andrew O.2,Cooper Owen R.12,Chang Kai-Lan12,Brown Steven S.2

Affiliation:

1. 1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA

2. 2NOAA Chemical Sciences Laboratory, Boulder, CO, USA

Abstract

The COVID-19 pandemic led many state and local governments in the United States to enact lockdowns to control the spread of the virus. These actions led to lower on-road emissions as a significant portion of the workforce began working from home. Here, we examine the concentrations of primary pollutants, nitrogen dioxide (NO2) and carbon monoxide (CO), a secondary pollutant, ozone (O3), and one that is both a primary and secondary pollutant, particulate matter (PM2.5), from 9 U.S. cities in 2020 using data reported to the U.S. Environmental Protection Agency to determine how they changed during the pandemic. We used a multiple linear regression model fitted to historical data to account for meteorology and found concentrations of NO2, O3, and CO generally decreased in the 9 cities in late March and early April, consistent with previous literature and a fuel-based emissions inventory. We further found the decadal trends of the 4 pollutants were decreased in the summer months for most of the cities studied. An analysis of weekend decreases in NO2 was consistent with previous studies; however, the weekend increases in O3 were typically dominated by reduced NOx titration. We further detect anomalous increases in NO2, CO, O3, and PM2.5 in western U.S. cities in the late summer, which we attribute to wildfire emissions. Finally, we examined diel profiles to determine when changes due to COVID-19 lockdowns and late-summer wildfires were most apparent during the day.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3