Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea

Author:

Oak Yujin J.1,Park Rokjin J.1ORCID,Schroeder Jason R.23,Crawford James H.2,Blake Donald R.4,Weinheimer Andrew J.5,Woo Jung-Hun6,Kim Sang-Woo1,Yeo Huidong1,Fried Alan7,Wisthaler Armin89,Brune William H.10

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, KR

2. NASA Langley Research Center, Hampton, Virginia, US

3. California Air Resources Board, Sacramento, California, US

4. Department of Chemistry, University of California at Irvine, Irvine, California, US

5. National Center for Atmospheric Research, Boulder, Colorado, US

6. Department of Advanced Technology Fusion, Konkuk University, Seoul, KR

7. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, US

8. Department of Chemistry, University of Oslo, Oslo, NO

9. Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, AT

10. Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, Pennsylvania, US

Abstract

We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3