Insight into anthropogenic forcing on coastal upwelling off south-central Chile

Author:

Aguirre Catalina12ORCID,García-Loyola Sebastián13,Testa Giovanni13,Silva Diego2,Farías Laura13

Affiliation:

1. Center for Climate and Resilience Research (CR)2, CL

2. School of Oceanic Engineering, Faculty of Engineering, University of Valparaíso, CL

3. Department of Oceanography, University of Concepción, CL

Abstract

Coastal upwelling systems off the coasts of Peru and Chile are among the most productive marine ecosystems in the world, sustaining a significant percentage of global primary production and fishery yields. Seasonal and interannual variability in these systems has been relatively well documented; however, an understanding of recent trends and the influence of climate change on marine processes such as surface cooling and primary productivity is limited. This study presents evidence that winds favorable to upwelling have increased within the southern boundary of the Humboldt Current System (35°–42°S) in recent decades. This trend is consistent with a poleward movement of the influence of the Southeast Pacific Anticyclone and resembles the spatial pattern projected by Global Circulation Models for warming scenarios. Chlorophyll a levels (from 2002 to present) determined by satellite and field-based time-series observations show a positive trend, mainly in austral spring–summer (December–January–February), potentially explained by observed increments in nutrient flux towards surface waters and photosynthetically active radiation. Both parameters appear to respond to alongshore wind stress and cloud cover in the latitudinal range of 35°S to 42°S. In addition, net annual deepening of the mixed layer depth is estimated using density and temperature profiles. Changes in this depth are associated with increasing winds and may explain cooler, more saline, and more productive surface waters, with the latter potentially causing fluctuations in dissolved oxygen and other gases, such as nitrous oxide, sensitive to changes in oxygenation. We argue that these recent changes represent, at least in part, a regional manifestation of the Anthropocene along the Chilean coast.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3