Sustainability: A flawed concept for fisheries management?

Author:

Stafford Richard1ORCID

Affiliation:

1. Department of Life and Environmental Sciences, Bournemouth University, Fern Barrrow, Poole, UK

Abstract

The concept of sustainable fishing is well ingrained in marine conservation and marine governance. However, I argue that the concept is deeply flawed; ecologically, socially and economically. Sustainability is strongly related, both historically and currently, to maximum long-term economic exploitation of a system. Counter-intuitively, in fisheries, achieving this economic exploitation often relies on government subsidies. While many fish populations are not sustainably fished biologically, even ‘sustainably harvesting’ fish results in major ecological changes to marine systems. These changes create unknown damage to ecosystem processes, including carbon capture potential of the ocean. The spatial scale of commercial fishing processes can also lead to social and food security issues in local, coastal communities that rely on fish for dietary needs. A radical alternative proposal is provided to the current situation. Ultimately, offshore fishing should be stopped completely and fish catches should rely instead on inshore fisheries. While such an approach may require a change in thinking and human behaviour regarding fish, I demonstrate that there are many benefits of this approach, including ecological, social and to local coastal economies, and few negatives, although management measures and coastal marine protected areas to protect vulnerable species and habitats would still be required. As such, the approach suggested is much more akin to a holistic definition of sustainability or ‘prevention of ecological harm’, rather than the maximum long-term exploitation of an ecosystem which is an underlying assumption of much fisheries and conservation research. While the suggestions in the study would benefit from further ecological, social and economic modelling, any movement towards restricting offshore catches should provide some degree of the benefits detailed.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3