Upward nitrate flux and downward particulate organic carbon flux under contrasting situations of stratification and turbulent mixing in an Arctic shelf sea

Author:

Wiedmann Ingrid1,Tremblay Jean-Éric2,Sundfjord Arild3,Reigstad Marit1

Affiliation:

1. UiT The Arctic University of Norway, Tromsø, NO

2. Québec-Océan and Takuvik, Biology Department, Université Laval, Québec City, Québec, CA

3. Norwegian Polar Institute, Tromsø, NO

Abstract

Increased sea ice melt alters vertical surface-mixing processes in Arctic seas. More melt water strengthens the stratification, but an absent ice cover also exposes the uppermost part of the water column to wind-induced mixing processes. We conducted a field study in the Barents Sea, an Arctic shelf sea, to examine the effects of stratification and vertical mixing processes on 1) the upward nitrate flux (into surface layers <65 m) and 2) the downward flux of particulate organic carbon (POC) to ≤200 m. In the Arctic-influenced, drift ice-covered northern Barents Sea, we found a low upward nitrate flux into the surface layers (<0.1 mmol nitrate m–2 d–1) and a moderate downward POC flux (40–200 m: 150–250 mg POC m–2 d–1) during the late phase of a peak bloom. A 1-D residence time calculation indicated that the nitrate concentration in the surface layers constantly declined. In the Atlantic-influenced, ice-free, and weakly stratified southern Barents Sea a high upward nitrate flux was found (into the surface layers ≤25 m: >5 mmol nitrate m–2 d–1) during a post bloom situation which was associated with a high downward POC flux (40–120 m: 260–600 mg POC m–2 d–1). We suggest that strong wind events during our field study induced vertical mixing processes and triggered upwards nitrate flux, while a combination of down-mixed phytoplankton and fast-sinking mesozooplankton fecal pellets enhanced the downward POC flux. The results of this study underscore the need to further investigate the role of strong, episodic wind events on the upward nitrate and downward POC fluxes in weakly stratified regions of the Arctic that may be ice-free in future.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3