The phenology of the spring phytoplankton bloom in the North Atlantic does not trend with temperature

Author:

Friedland Kevin D.1ORCID,Nielsen Jens M.23,Record Nicholas R.4,Brady Damian C.5,Morrow Clay J.6

Affiliation:

1. 1Northeast Fisheries Science Center, Narragansett, RI, USA

2. 2Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, USA

3. 3National Oceanic and Atmospheric Administration, Alaska Fisheries Science Center, Seattle, WA, USA

4. 4Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA

5. 5Darling Marine Center, University of Maine, Walpole, ME, USA

6. 6Northern Research Station, USDA Forest Service, Madison, WI, USA

Abstract

Climate change is anticipated to alter the phenology of phytoplankton blooms in the ocean, making their recent dynamics of interest to inform models of future ocean states. We characterized temperature change in the North Atlantic using metrics that track the patterns of sea surface water temperature (SST) defined by quantiles. To complement these thermal indicators, we estimated a thermal phenology index in the form of the date of the spring transition, taken as the date that temperature achieved the long-term mean at a specific location. We then used ocean color data (1998–2022) and characterized spring bloom phenology using change point methods to derive bloom initiation, duration, magnitude, and intensity. The North Atlantic has warmed over recent decades, averaging a rate of increase of 0.27°C decade−1, yet throughout most of the basin, spring transition timing has remained constant, with the exception of small areas with either delayed or advanced transitions. There were no clear trends in bloom start or duration in the North Atlantic, indicating that spring bloom phenology was independent of climate-driven temperature change. Bloom magnitude and intensity trended downward in some North Atlantic continental shelf seas, indicating that increased temperatures may have had negative effects on overall bloom productivity. However, exclusive of the areas where the bloom parameters were trending, there was a decrease in magnitude and intensity with warmer winter temperatures, suggesting that the inter-annual variability of these parameters may be affected by thermal conditions at the onset of the bloom. While temperature has increased in the North Atlantic, vernal light availability has remained unchanged, which may explain why spring bloom phenology has remained resistant to climate change. Consequently, it seems plausible that future climate change may have limited effects on spring bloom phenology, but could have substantial effects on overall phytoplankton production.

Publisher

University of California Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3