Spatial and temporal variability of ozone along the Colorado Front Range occurring over 2 days with contrasting wind flow

Author:

Darby Lisa S.1,Senff Christoph J.23,Alvarez II Raul J.2,Banta Robert M.23,Bianco Laura13,Helmig Detlev4,White Allen B.1

Affiliation:

1. NOAA Physical Sciences Laboratory (PSL), Boulder, CO, USA

2. NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA

3. Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA

4. Boulder Atmosphere Innovation Research LLC, Boulder, CO, USA

Abstract

Transport of pollution into pristine wilderness areas is of concern for both federal and state agencies. Assessing such transport in complex terrain is a challenge when relying solely on data from standard federal or state air quality monitoring networks because of the sparsity of network monitors beyond urban areas. During the Front Range air quality study, conducted in the summer of 2008 in the vicinity of Denver, CO, research-grade surface air quality data, vertical wind profiles and mixing heights obtained by radar wind profilers, and ozone profile data obtained by an airborne ozone differential absorption lidar augmented the local regulatory monitoring networks. Measurements from this study were taken on 2 successive days at the end of July 2008. On the first day, the prevailing winds were downslope westerly, advecting pollution to the east of the Front Range metropolitan areas. On this day, chemistry measurements at the mountain and foothills surface stations showed seasonal background ozone levels of approximately 55–68 ppbv (nmol mol–1 by volume). The next day, upslope winds prevailed, advecting pollution from the Plains into the Rocky Mountains and across the Continental Divide. Mountain stations measured ozone values greater than 90 ppbv, comparable to, or greater than, nearby urban measurements. The measurements show the progression of the ozone-enriched air into the mountains and tie the westward intrusion into high-elevation mountain sites to the growth of the afternoon boundary layer. Thus, under deep upslope flow conditions, ozone-enriched air can be advected into wilderness areas of the Rocky Mountains. Our findings highlight a process that is likely to be an important ozone transport mechanism in mountainous terrain adjacent to ozone source areas when the right circumstances come together, namely a deep layer of light winds toward a mountain barrier coincident with a deep regional boundary layer.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3