Spatial distribution of atmospheric oil and natural gas volatile organic compounds in the Northern Colorado Front Range

Author:

Rossabi Samuel1,Hueber Jacques1,Wang Wei1,Milmoe Pam2,Helmig Detlev13

Affiliation:

1. Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA

2. Environmental Health Division, Boulder County Public Health, Boulder, CO, USA

3. Current address: Boulder AIR LLC, Boulder, CO, USA

Abstract

Methane and nonmethane volatile organic compounds (VOCs) were monitored near Boulder in the Northern Colorado Front Range to investigate their spatial distribution and sources as a part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) and the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign, in summer 2014. A particular emphasis was the study of the contribution of emissions from oil and natural gas (O&NG) operations on the regional air quality. One network extended along an elevation gradient from the City of Boulder (elevation ≈1,600 m) to the University of Colorado Mountain Research Station (≈2900 m) on the eastern slopes of the Rocky Mountains. Light alkane petroleum hydrocarbons had the highest mole fraction of the VOCs that could be analyzed with the applied techniques. The longer lived VOCs ethane and propane decreased with increasing elevation, suggesting that Boulder and the surrounding plains were a source of these anthropogenic compounds. VOC diurnal time series showed a few events with elevated mole fractions at the mountain sites, which were likely the result of the upslope transport of plumes with elevated VOCs from the plains. Within the other site network, which extended into suburban East Boulder County (EBC), VOCs were monitored at 5 sites increasingly close to O&NG development in the Denver Julesburg Basin. Mean mole fractions and variability of primarily O&NG-associated VOCs (ethane, propane, butane isomers) increased by a factor of 2.4–5.2 with closer proximity to the O&NG producing region. Median mole fractions of C2–C5 n-alkanes and of imuch-butane at the EBC sites were higher than those previously reported from 28 larger urban areas in the United States. Among the VOCs that could be quantified with the gas chromatography methods, VOCs most clearly associated to O&NG-related emissions (C2–C5 alkanes) accounted for 52%–79% of the VOC hydroxyl radical reactivity (OHR). The horizontal gradient in OHR of the considered VOCs, with ≈3 times higher values at the furthest eastern sites, points toward higher chemical reactivity and ozone production potential from these ozone precursors in the eastern area of the county than within the City of Boulder.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3