Lake water dissolved inorganic carbon dynamics revealed from monthly measurements of radiocarbon in the Fuji Five Lakes, Japan

Author:

Ota Kosuke12,Yokoyama Yusuke12345,Miyairi Yosuke1,Yamamoto Shinya6,Miyajima Toshihiro1

Affiliation:

1. Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

2. Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan

3. Graduate Program on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan

4. Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

5. Research School of Physics, The Australian National University, Canberra, Australia

6. Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan

Abstract

Lakes are sensitive recorders of anthropogenic activities, as human society often develops in their vicinity. Lake sediments thus have been widely used to reconstruct the history of environmental changes in the past, anthropogenic, or otherwise, and radiocarbon dating provides chronological control of the samples. However, specific values of radiocarbon in different carbon reservoirs due to the different pathways of radiocarbon from the upper atmosphere to the lake, called the radiocarbon reservoir age, is always difficult to evaluate because of dynamic processes in and around lakes. There are few systematic studies on radiocarbon reservoir ages for lakes owing to the complex radiocarbon transfer processes for lakes. Here, we investigate lake waters of the Fuji Five Lakes with monthly monitoring of the radiocarbon reservoir effects. Radiocarbon from dissolved inorganic carbon (DIC) for groundwater and river water is also measured, with resulting concentrations (Δ14C) at their lowest at Lake Kawaguchi in August 2018 (–122.4 ± 3.2‰), and at their highest at Lake Motosu in January 2019 (–22.4 ± 2.5‰), despite a distance of 25 km. However, winter values in both lakes show similar trends of rising Δ14C (about 20‰). Our lake water DIC Δ14C results are compared to previously published records obtained from sediments in Lake Motosu and Lake Kawaguchi. These suggest that total organic carbon and compound-specific radiocarbon found in sediments are heavily influenced by summer blooms of aquatic organisms that fix DIC in water. Thus, future studies to conduct similar analyses at the various lakes would be able to provide further insights into the carbon cycle around inland water, namely understanding the nature of radiocarbon reservoir ages.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3