Mixing Dynamics Within the Kuroshio Area Are Reflected in Dissolved Inorganic Radiocarbon Values

Author:

Lan Hui12ORCID,Yokoyama Yusuke1234ORCID,Hirabayashi Shoko1ORCID,Miyairi Yosuke1,Jiang Siyu1ORCID,Saito Hiroaki1ORCID,Hasumi Hiroyasu1ORCID,Yasuda Ichiro1

Affiliation:

1. Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa‐shi Japan

2. Department of Multi‐Disciplinary Sciences Graduate Program on Environmental Sciences The University of Tokyo Meguro‐ku Japan

3. Department of Earth and Planetary Science Graduate School of Science The University of Tokyo Bunkyo‐ku Japan

4. Research School of Physics The Australian National University Canberra ACT Australia

Abstract

AbstractKuroshio is an important western boundary current system in the North Pacific subtropical gyre. Mesoscale eddies play an important role in Kuroshio path variations, which significantly affect fisheries, marine navigation, and climate in regions along the Kuroshio path. However, the direct physical impacts of the Kuroshio variabilities on mixing dynamics within the water columns off the southern coast of Japan remain unclear due to the lack of observational records. The radiocarbon (Δ14C) in dissolved inorganic carbon (DIC) of seawater has been used as a reliable tracer of water circulation and mixing processes. Here, we present the high‐resolution dissolved inorganic radiocarbon (DIC ∆14C) measurements for water samples collected during the Kuroshio large‐meander (LM) period in March 2022 to observe the mixing dynamics within the Kuroshio area and elucidate the controls of mixing processes. In the present study, horizontal variations (12–175‰) in DIC Δ14C values were observed between 400 and 1,000 m and were attributed mainly to changes in the depth of isopycnal surfaces associated with mesoscale eddies and the position of the Kuroshio axis. Furthermore, fluctuations in DIC Δ14C values (10–25‰) were observed on the same isopycnal surfaces ( 25.5–27.0), suggesting the occurrence of diapycnal mixing. By comparing this newly obtained data with values previously reported at similar locations, variations in penetration depths of high bomb 14C signals from past observations are found to be mainly caused by changes in the depth of isopycnal surfaces associated with mesoscale eddies and Kuroshio path variations.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3