The importance of transparent exopolymer particles over ballast in determining both sinking and suspension of small particles during late summer in the Northeast Pacific Ocean

Author:

Romanelli Elisa1ORCID,Sweet Julia23,Giering Sarah Lou Carolin4,Siegel David A.1,Passow Uta25

Affiliation:

1. 1Earth Research Institute, University of California, Santa Barbara, CA, USA

2. 2Marine Science Institute, University of California, Santa Barbara, CA, USA

3. 3University of Louisiana at Lafayette, LA, USA

4. 4National Oceanography Centre, Southampton, UK

5. 5Memorial University, St John’s, Newfoundland and Labrador, Canada

Abstract

Gravitational sinking of particles is a key pathway for the transport of particulate organic carbon (POC) to the deep ocean. Particle size and composition influence particle sinking velocity and thus play a critical role in controlling particle flux. Canonically, sinking particles that reach the mesopelagic are expected to be either large or ballasted by minerals. However, the presence of transparent exopolymer particles (TEP), which are positively buoyant, may also influence particle sinking velocity. We investigated the relationship between particle composition and sinking velocity during the Export Processes in the Ocean from RemoTe Sensing (EXPORTS) campaign in the Northeast Pacific Ocean using Marine Snow Catchers. Suspended and sinking particles were sized using FlowCam for particle imaging, and their biogeochemical composition was assessed by measuring the concentration of particulate organic carbon (POC) and nitrogen, particulate inorganic carbon, biogenic and lithogenic silica, and TEP. Sinking fluxes were also calculated. Overall, both suspended and sinking particles were small (<51 μm, diameter) in this late summer, oligotrophic system. Contrary to expectation, the ratio of ballast minerals to POC was higher for suspended particles than sinking particles. Further, suspended particles showed TEP-to-POC ratios three times higher than sinking particles. These ratios suggest that TEP content and not ballast dictated whether particles in this system would sink (low TEP) or remain suspended (high TEP). Fluxes of POC averaged 4.3 ± 2.5 mmol C m−2 d−1 at 50 m (n = 9) and decreased to 3.1 ± 1.1 mmol C m−2 d−1 at 300–500 m (n = 6). These flux estimates were slightly higher than fluxes measured during EXPORTS with drifting sediment traps and Thorium-234. A comparison between these approaches illustrates that small sinking particles were an important component of the POC flux in the mesopelagic of this late summer oligotrophic system.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3