Body-size scaling of metabolic rate in the trilobite Eldredgeops rana

Author:

Glazier Douglas S.,Powell Matthew G.,Deptola Travis J.

Abstract

We infer the body-size scaling slope of metabolic rate in a trilobite by applying a cell-size model that has been proposed to explain metabolic scaling in living organisms. This application is especially tractable in fossil arthropods with well-preserved compound eyes because the number and size of eye facets appear to be useful proxies for the relative number and size of cells in the body. As a case study, we examined the ontogenetic scaling of facet size and number in a ∼390-Myr-old local assemblage of the trilobite Eldredgeops rana, which has well-preserved compound eyes and a wide body-size range. Growth in total eye lens area resulted from increases in both facet area and number in relatively small (presumably young) specimens, but only from increases in facet area in large (presumably more mature) specimens. These results suggest that early growth in E. rana involved both cell multiplication and enlargement, whereas later growth involved only cell enlargement. If the cell-size model is correct, then metabolic rate scaled allometrically in E. rana, and the scaling slope of log metabolic rate versus log body mass decreased from ∼0.85 to 0.63 as these animals grew. This inferred age-specific change in metabolic scaling is consistent with similar changes frequently observed in living animals. Additional preliminary analyses of literature data on other trilobites also suggest that the metabolic scaling slope was <1 in benthic species, but ∼1 in pelagic species, as has also been observed in living invertebrates. The eye-facet size (EFS) method featured here opens up new possibilities for examining the bioenergetic allometry of extinct arthropods.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3