A Revision of the Traditional Analysis Method of Allometry to Allow Extension of the Normality-Borne Complexity of Error Structure: Examining the Adequacy of a Normal-Mixture Distribution-Driven Error Term

Author:

Villa-Diharce Enrique1,Echavarria-Heras Hector Alonso2ORCID,Montesinos-López Abelardo3,Leal-Ramírez Cecilia2

Affiliation:

1. Centro de Investigación en Matemáticas, A.C. Jalisco S/N, Mineral Valenciana, Guanajuato, Gto 36240, Mexico

2. Centro de Investigación Científica y de Estudios Superiores de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860, 360 Ensenada, B.C., Mexico

3. Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430 Guadalajara, Jalisco, Mexico

Abstract

Huxley’s model of simple allometry provides a parsimonious scheme for examining scaling relationships in scientific research, resource management, and species conservation endeavors. Factors including biological error, analysis method, sample size, and overall data quality can undermine the reliability of a fit of Huxley’s model. Customary amendments enhance the complexity of the power function-conveyed systematic term while keeping the usual normality-borne error structure. The resulting protocols bear multiple-parameter complex allometry forms that could pose interpretative shortcomings and parameter estimation difficulties, and even being empirically pertinent, they could potentially bear overfitting. A subsequent heavy-tailed Q-Q normal spread often remains undetected since the adequacy of a normally distributed error term remains unexplored. Previously, we promoted the advantages of keeping Huxley’s model-driven systematic part while switching to a logistically distributed error term to improve fit quality. Here, we analyzed eelgrass leaf biomass and area data exhibiting a marked size-related heterogeneity, perhaps explaining a lack of systematization at data gathering. Overdispersion precluded adequacy of the logistically adapted protocol, thereby suggesting processing data through a median absolute deviation scheme aimed to remove unduly replicates. Nevertheless, achieving regularity to Huxley’s power function-like trend required the removal of many replicates, thereby questioning the integrity of a data cleaning approach. But, we managed to adapt the complexity of the error term to reliably identify Huxley’s model-like systematic part masked by variability in data. Achieving this relied on an error term conforming to a normal mixture distribution which successfully managed overdispersion in data. Compared to normal-complex allometry and data cleaning composites present arrangement delivered a coherent Q-Q normal mixture spread and a remarkable reproducibility strength of derived proxies. By keeping the analysis within Huxley’s original theory, the present approach enables substantiating nondestructive allometric proxies aimed at eelgrass conservation. The viewpoint endorsed here could also make data cleaning unnecessary.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The logarithmic transformation in bivariate allometry;Biological Journal of the Linnean Society;2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3