A Unifying Bayesian Formulation of Measures of Interpretability in Human-AI Interaction

Author:

Sreedharan Sarath1,Kulkarni Anagha1,Smith David2,Kambhampati Subbarao1

Affiliation:

1. Arizona State University

2. PSresearch

Abstract

Existing approaches for generating human-aware agent behaviors have considered different measures of interpretability in isolation. Further, these measures have been studied under differing assumptions, thus precluding the possibility of designing a single framework that captures these measures under the same assumptions. In this paper, we present a unifying Bayesian framework that models a human observer's evolving beliefs about an agent and thereby define the problem of Generalized Human-Aware Planning. We will show that the definitions of interpretability measures like explicability, legibility and predictability from the prior literature fall out as special cases of our general framework. Through this framework, we also bring a previously ignored fact to light that the human-robot interactions are in effect open-world problems, particularly as a result of modeling the human's beliefs over the agent. Since the human may not only hold beliefs unknown to the agent but may also form new hypotheses about the agent when presented with novel or unexpected behaviors.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling;Transportation Research Part B: Methodological;2024-06

2. SLOT-V: Supervised Learning of Observer Models for Legible Robot Motion Planning in Manipulation;2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2022-08-29

3. The Mirror Agent Model: A Bayesian Architecture for Interpretable Agent Behavior;Explainable and Transparent AI and Multi-Agent Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3