ChimeraMix: Image Classification on Small Datasets via Masked Feature Mixing

Author:

Reinders Christoph1,Schubert Frederik1,Rosenhahn Bodo1

Affiliation:

1. Leibniz University Hannover

Abstract

Deep convolutional neural networks require large amounts of labeled data samples. For many real-world applications, this is a major limitation which is commonly treated by augmentation methods. In this work, we address the problem of learning deep neural networks on small datasets. Our proposed architecture called ChimeraMix learns a data augmentation by generating compositions of instances. The generative model encodes images in pairs, combines the features guided by a mask, and creates new samples. For evaluation, all methods are trained from scratch without any additional data. Several experiments on benchmark datasets, e.g. ciFAIR-10, STL-10, and ciFAIR-100, demonstrate the superior performance of ChimeraMix compared to current state-of-the-art methods for classification on small datasets. Code is available at https://github.com/creinders/ChimeraMix.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unet-boosted Classifier – Multi-Task Architecture for Small Datasets Applied to Brain MRI Classification;Informatics and Automation;2024-06-26

2. Two Worlds in One Network: Fusing Deep Learning and Random Forests for Classification and Object Detection;Volunteered Geographic Information;2023-12-09

3. No Data Augmentation? Alternative Regularizations for Effective Training on Small Datasets;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. Compensation Learning in Semantic Segmentation;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

5. Deep Reinforcement Learning for Autonomous Driving using High-Level Heterogeneous Graph Representations;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3