Learning Interpretable Models in the Property Specification Language

Author:

Roy Rajarshi1,Fisman Dana2,Neider Daniel1

Affiliation:

1. Max Planck Institute for Software Systems

2. Ben-Gurion University

Abstract

We address the problem of learning human-interpretable descriptions of a complex system from a finite set of positive and negative examples of its behavior. In contrast to most of the recent work in this area, which focuses on descriptions expressed in Linear Temporal Logic (LTL), we develop a learning algorithm for formulas in the IEEE standard temporal logic PSL (Property Specification Language). Our work is motivated by the fact that many natural properties, such as an event happening at every n-th point in time, cannot be expressed in LTL, whereas it is easy to express such properties in PSL. Moreover, formulas in PSL can be more succinct and easier to interpret (due to the use of regular expressions in PSL formulas) than formulas in LTL. The learning algorithm we designed, builds on top of an existing algorithm for learning LTL formulas. Roughly speaking, our algorithm reduces the learning task to a constraint satisfaction problem in propositional logic and then uses a SAT solver to search for a solution in an incremental fashion. We have implemented our algorithm and performed a comparative study between the proposed method and the existing LTL learning algorithm. Our results illustrate the effectiveness of the proposed approach to provide succinct human-interpretable descriptions from examples.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Branching-Time Properties in CTL and ATL via Constraint Solving;Lecture Notes in Computer Science;2024-09-11

2. Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic;Journal of Open Source Software;2024-01-09

3. SAT-Based Learning of Computation Tree Logic;Lecture Notes in Computer Science;2024

4. Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic;Lecture Notes in Computer Science;2023-12-30

5. Efficient Inference of Temporal Task Specifications from Human Demonstrations using Experiment Design;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3