Learning Branching-Time Properties in CTL and ATL via Constraint Solving

Author:

Bordais Benjamin,Neider Daniel,Roy Rajarshi

Abstract

AbstractWe address the problem of learning temporal properties from the branching-time behavior of systems. Existing research in this field has mostly focused on learning linear temporal properties specified using popular logics, such as Linear Temporal Logic (LTL) and Signal Temporal Logic (STL). Branching-time logics such as Computation Tree Logic (CTL) and Alternating-time Temporal Logic (ATL), despite being extensively used in specifying and verifying distributed and multi-agent systems, have not received adequate attention. Thus, in this paper, we investigate the problem of learning CTL and ATL formulas from examples of system behavior. As input to the learning problems, we rely on the typical representations of branching behavior as Kripke structures and concurrent game structures, respectively. Given a sample of structures, we learn concise formulas by encoding the learning problem into a satisfiability problem, most notably by symbolically encoding both the search for prospective formulas and their fixed-point based model checking algorithms. We also study the decision problem of checking the existence of prospective ATL formulas for a given sample. We implement our algorithms in a Python prototype and have evaluated them to extract several common CTL and ATL formulas used in practical applications.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3