Spotting Collective Behaviour of Online Frauds in Customer Reviews

Author:

Dhawan Sarthika1,Gangireddy Siva Charan Reddy1,Kumar Shiv2,Chakraborty Tanmoy1

Affiliation:

1. Indraprastha Institute of Information Technology Delhi (IIITD), India

2. Netaji Subhas University of Technology (NSUT), Delhi, India

Abstract

Online reviews play a crucial role in deciding the quality before purchasing any product. Unfortunately, spammers often take advantage of online review forums by writing fraud reviews to promote/demote certain products. It may turn out to be more detrimental when such spammers collude and collectively inject spam reviews as they can take complete control of users' sentiment due to the volume of fraud reviews they inject. Group spam detection is thus more challenging than individual-level fraud detection due to unclear definition of a group, variation of inter-group dynamics, scarcity of labeled group-level spam data, etc. Here, we propose DeFrauder, an unsupervised method to detect online fraud reviewer groups. It first detects candidate fraud groups by leveraging the underlying product review graph and incorporating several behavioral signals which model multi-faceted collaboration among reviewers. It then maps reviewers into an embedding space and assigns a spam score to each group such that groups comprising spammers with highly similar behavioral traits achieve high spam score. While comparing with five baselines on four real-world datasets (two of them were curated by us), DeFrauder shows superior performance by outperforming the best baseline with 17.11% higher NDCG@50 (on average) across datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CausalFD: causal invariance-based fraud detection against camouflaged preference;International Journal of Machine Learning and Cybernetics;2024-05-27

2. FiFrauD: Unsupervised Financial Fraud Detection in Dynamic Graph Streams;ACM Transactions on Knowledge Discovery from Data;2024-02-27

3. Dual Channel Graph Neural Network for Fraud Detection;Communications in Computer and Information Science;2023

4. USDSE: A Novel Method to Improve Service Reputation Based on Double-Side Evaluation;Machine Learning for Cyber Security;2023

5. Boosting the Performance of Deployable Timestamped Directed GNNs via Time-Relaxed Sampling;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3