1. Biewald, L.: Experiment tracking with weights and biases, 2020. Software available from wandb. com 2(5), 233 (2020)
2. Breuer, A., Eilat, R., Weinsberg, U.: Friend or faux: Graph-based early detection of fake accounts on social networks. In: Proceedings of The Web Conference 2020, pp. 1287–1297. WWW ’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366423.3380204
3. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International Conference on Learning Representations (2022). www.openreview.net/forum?id=F72ximsx7C1
4. Cao, D., Li, J., Ma, H., Tomizuka, M.: Spectral temporal graph neural network for trajectory prediction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1839–1845. IEEE (2021)
5. Cao, D., et al.: Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural. Inf. Process. Syst. 33, 17766–17778 (2020)