Abstract
We propose an anytime bottom-up technique for learning logical rules from large knowledge graphs. We apply the learned rules to predict candidates in the context of knowledge graph completion. Our approach outperforms other rule-based approaches and it is competitive with current state of the art, which is based on latent representations. Besides, our approach is significantly faster, requires less computational resources, and yields an explanation in terms of the rules that propose a candidate.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献