Anytime Bottom-Up Rule Learning for Knowledge Graph Completion

Author:

Meilicke Christian1,Chekol Melisachew Wudage1,Ruffinelli Daniel1,Stuckenschmidt Heiner1

Affiliation:

1. University Mannheim

Abstract

We propose an anytime bottom-up technique for learning logical rules from large knowledge graphs. We apply the learned rules to predict candidates in the context of knowledge graph completion. Our approach outperforms other rule-based approaches and it is competitive with current state of the art, which is based on latent representations. Besides, our approach is significantly faster, requires less computational resources, and yields an explanation in terms of the rules that propose a candidate.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inductive reasoning with type-constrained encoding for emerging entities;Neural Networks;2024-10

2. Integrating global semantics and enhanced local subgraph for inductive link prediction;International Journal of Machine Learning and Cybernetics;2024-09-06

3. MDGRL: Multi-dimensional graph rule learning;Engineering Applications of Artificial Intelligence;2024-09

4. Towards semantically enriched embeddings for knowledge graph completion;Neurosymbolic Artificial Intelligence;2024-08-21

5. Neural-Symbolic Methods for Knowledge Graph Reasoning: A Survey;ACM Transactions on Knowledge Discovery from Data;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3