Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements

Author:

Lu Canyi1,Feng Jiashi2,Lin Zhouchen34,Yan Shuicheng25

Affiliation:

1. Department of Electrical and Computer Engineering, Carnegie Mellon University

2. Department of Electrical and Computer Engineering, National University of Singapore

3. Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

4. Cooperative Medianet Innovation Center, Shanghai Jiao Tong University

5. 360 AI Institute

Abstract

The recent proposed Tensor Nuclear Norm (TNN) [Lu et al., 2016; 2018a] is an interesting convex penalty induced by the tensor SVD [Kilmer and Martin, 2011]. It plays a similar role as the matrix nuclear norm which is the convex surrogate of the matrix rank. Considering that the TNN based Tensor Robust PCA [Lu et al., 2018a] is an elegant extension of Robust PCA with a similar tight recovery bound, it is natural to solve other low rank tensor recovery problems extended from the matrix cases. However, the extensions and proofs are generally tedious. The general atomic norm provides a unified view of low-complexity structures induced norms, e.g., the l1-norm and nuclear norm. The sharp estimates of the required number of generic measurements for exact recovery based on the atomic norm are known in the literature. In this work, with a careful choice of the atomic set, we prove that TNN is a special atomic norm. Then by computing the Gaussian width of certain cone which is necessary for the sharp estimate, we achieve a simple bound for guaranteed low tubal rank tensor recovery from Gaussian measurements. Specifically, we show that by solving a TNN minimization problem, the underlying tensor of size n1×n2×n3 with tubal rank r can be exactly recovered when the given number of Gaussian measurements is O(r(n1+n2−r)n3). It is order optimal when comparing with the degrees of freedom r(n1+n2−r)n3. Beyond the Gaussian mapping, we also give the recovery guarantee of tensor completion based on the uniform random mapping by TNN minimization. Numerical experiments verify our theoretical results.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3