A robust low‐rank tensor completion model with sparse noise for higher‐order data recovery

Author:

Wang Min1,Chen Zhuying1ORCID,Zhang Shuyi1

Affiliation:

1. School of Information Management Jiangxi University of Finance and Economics Nanchang Jiangxi China

Abstract

AbstractThe tensor singular value decomposition‐based model has garnered increasing attention in addressing tensor recovery challenges. However, existing tensor recovery methods exhibit certain inherent limitations. Some ignore the simultaneous effects of noise and missing values, while most can't handle higher‐order tensors, which are not reflective of real‐world scenarios. The information redundancy within tensor data often leads to a prevailing low‐rank structure, making low‐rankness a vital prior in the tensor recovery process. To tackle this pressing issue, a robust low‐rank tensor recovery framework is proposed to rehabilitate higher‐order tensors corrupted by sparse noise and missing entries. In the model, the tensor nuclear norm derived for order‐d tensors (d 4) are employed as a representation of the low‐rank prior, while utilizing the ‐norm to model the sparse noise. To solve the proposed model, an efficient Alternating direction method of multipliers algorithm is developed. A series of experiments are performed on synthetic and real‐world datasets. The results show that the superior performance of the method compared with other algorithms dedicated to addressing order‐d tensor recovery challenges. Notably, in scenarios where the data is severely compromised (noise ratio 40%, sample ratio 70%), the algorithm consistently outperforms its competitors, achieving significantly improved results.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3