UNBERT: User-News Matching BERT for News Recommendation

Author:

Zhang Qi1,Li Jingjie1,Jia Qinglin1,Wang Chuyuan1,Zhu Jieming1,Wang Zhaowei1,He Xiuqiang1

Affiliation:

1. Huawei Noah's Ark Lab

Abstract

Nowadays, news recommendation has become a popular channel for users to access news of their interests. How to represent rich textual contents of news and precisely match users' interests and candidate news lies in the core of news recommendation. However, existing recommendation methods merely learn textual representations from in-domain news data, which limits their generalization ability to new news that are common in cold-start scenarios. Meanwhile, many of these methods represent each user by aggregating the historically browsed news into a single vector and then compute the matching score with the candidate news vector, which may lose the low-level matching signals. In this paper, we explore the use of the successful BERT pre-training technique in NLP for news recommendation and propose a BERT-based user-news matching model, called UNBERT. In contrast to existing research, our UNBERT model not only leverages the pre-trained model with rich language knowledge to enhance textual representation, but also captures multi-grained user-news matching signals at both word-level and news-level. Extensive experiments on the Microsoft News Dataset (MIND) demonstrate that our approach constantly outperforms the state-of-the-art methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3