Personalized Federated Learning With a Graph

Author:

Chen Fengwen1,Long Guodong1,Wu Zonghan2,Zhou Tianyi34,Jiang Jing1

Affiliation:

1. University of Technology Sydney

2. Univerity of Technology Sydney

3. University of Washington

4. University of Maryland, College Park

Abstract

Knowledge sharing and model personalization are two key components in the conceptual framework of personalized federated learning (PFL). Existing PFL methods focus on proposing new model personalization mechanisms while simply implementing knowledge sharing by aggregating models from all clients, regardless of their relation graph. This paper aims to enhance the knowledge-sharing process in PFL by leveraging the graph-based structural information among clients. We propose a novel structured federated learning (SFL) framework to learn both the global and personalized models simultaneously using client-wise relation graphs and clients' private data. We cast SFL with graph into a novel optimization problem that can model the client-wise complex relations and graph-based structural topology by a unified framework. Moreover, in addition to using an existing relation graph, SFL could be expanded to learn the hidden relations among clients. Experiments on traffic and image benchmark datasets can demonstrate the effectiveness of the proposed method.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3