1. Ogier du Terrail, J., Ayed, S.-S., Cyffers, E., Grimberg, F., He, C., Loeb, R., Mangold, P., Marchand, T., Marfoq, O., Mushtaq, E., et al.: FLamby: datasets and benchmarks for cross-silo federated learning in realistic healthcare settings. Adv. Neural Inf. Process. Syst. 35, 5315–5334 (2022)
2. Liu, Z., Chen, Y., Zhao, Y., Yu, H., Liu, Y., Bao, R., Jiang, J., Nie, Z., Xu, Q., Yang, Q.: Contribution-aware federated learning for smart healthcare. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 11, pp. 12396–12404 (2022)
3. Saputra, Y.M., Nguyen, D.N., Hoang, D.T., Dutkiewicz, E.: Incentive mechanism for AI-based mobile applications with coded federated learning. In: 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2021)
4. Wang, C., Hu, B., Wu, H.: Energy minimization for federated asynchronous learning on battery-powered mobile devices via application co-running. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), pp. 939–949. IEEE (2022)
5. Zhang, H., Shen, T., Wu, F., Yin, M., Yang, H., Wu, C.: Federated graph learning–a position paper (2021). arXiv preprint arXiv:2105.11099