Representation Learning-Assisted Click-Through Rate Prediction

Author:

Ouyang Wentao1,Zhang Xiuwu1,Ren Shukui1,Qi Chao1,Liu Zhaojie1,Du Yanlong1

Affiliation:

1. Alibaba Group

Abstract

Click-through rate (CTR) prediction is a critical task in online advertising systems. Most existing methods mainly model the feature-CTR relationship and suffer from the data sparsity issue. In this paper, we propose DeepMCP, which models other types of relationships in order to learn more informative and statistically reliable feature representations, and in consequence to improve the performance of CTR prediction. In particular, DeepMCP contains three parts: a matching subnet, a correlation subnet and a prediction subnet. These subnets model the user-ad, ad-ad and feature-CTR relationship respectively. When these subnets are jointly optimized under the supervision of the target labels, the learned feature representations have both good prediction powers and good representation abilities. Experiments on two large-scale datasets demonstrate that DeepMCP outperforms several state-of-the-art models for CTR prediction.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MeFiNet: Modeling multi-semantic convolution-based feature interactions for CTR prediction;Intelligent Data Analysis;2023-11-30

2. SoCraft: Advertiser-level Predictive Scoring for Creative Performance on Meta;Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining;2023-02-27

3. Click-through rate prediction in online advertising: A literature review;Information Processing & Management;2022-03

4. Modeling Users' Contextualized Page-wise Feedback for Click-Through Rate Prediction in E-commerce Search;Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining;2022-02-11

5. Deep Spatio-Temporal Attention Network for Click-Through Rate Prediction;Intelligent Computing Methodologies;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3