DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with Diffusion Models

Author:

Yang Sicheng1,Wu Zhiyong12,Li Minglei3,Zhang Zhensong4,Hao Lei4,Bao Weihong1,Cheng Ming1,Xiao Long1

Affiliation:

1. Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

2. The Chinese University of Hong Kong, Hong Kong SAR, China

3. Huawei Cloud Computing Technologies Co., Ltd, Shenzhen, China

4. Huawei Noah’s Ark Lab, Shenzhen, China

Abstract

The art of communication beyond speech there are gestures. The automatic co-speech gesture generation draws much attention in computer animation. It is a challenging task due to the diversity of gestures and the difficulty of matching the rhythm and semantics of the gesture to the corresponding speech. To address these problems, we present DiffuseStyleGesture, a diffusion model based speech-driven gesture generation approach. It generates high-quality, speech-matched, stylized, and diverse co-speech gestures based on given speeches of arbitrary length. Specifically, we introduce cross-local attention and self-attention to the gesture diffusion pipeline to generate better speech matched and realistic gestures. We then train our model with classifier-free guidance to control the gesture style by interpolation or extrapolation. Additionally, we improve the diversity of generated gestures with different initial gestures and noise. Extensive experiments show that our method outperforms recent approaches on speech-driven gesture generation. Our code, pre-trained models, and demos are available at https://github.com/YoungSeng/DiffuseStyleGesture.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speech-Driven Personalized Gesture Synthetics: Harnessing Automatic Fuzzy Feature Inference;IEEE Transactions on Visualization and Computer Graphics;2024-10

2. TAG2G: A Diffusion-Based Approach to Interlocutor-Aware Co-Speech Gesture Generation;Electronics;2024-08-24

3. MDG:Multilingual Co-speech Gesture Generation with Low-level Audio Representation and Diffusion Models;2024 International Conference on Asian Language Processing (IALP);2024-08-04

4. Semantic Gesticulator: Semantics-Aware Co-Speech Gesture Synthesis;ACM Transactions on Graphics;2024-07-19

5. Dual-Path Transformer-Based GAN for Co-speech Gesture Synthesis;International Journal of Social Robotics;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3