Semantic Gesticulator: Semantics-Aware Co-Speech Gesture Synthesis

Author:

Zhang Zeyi1ORCID,Ao Tenglong2ORCID,Zhang Yuyao3ORCID,Gao Qingzhe45ORCID,Lin Chuan5ORCID,Chen Baoquan67ORCID,Liu Libin67ORCID

Affiliation:

1. School of EECS, Peking University, Beijing, China

2. School of Computer Science, Peking University, Beijing, China

3. Renmin University of China, Beijing, China

4. Shandong University, Beijing, China

5. Peking University, Beijing, China

6. School of Intelligence Science Technology, Peking University, Beijing, China

7. State Key Laboratory of General Artificial Intelligence, Beijing, China

Abstract

In this work, we present Semantic Gesticulator , a novel framework designed to synthesize realistic gestures accompanying speech with strong semantic correspondence. Semantically meaningful gestures are crucial for effective non-verbal communication, but such gestures often fall within the long tail of the distribution of natural human motion. The sparsity of these movements makes it challenging for deep learning-based systems, trained on moderately sized datasets, to capture the relationship between the movements and the corresponding speech semantics. To address this challenge, we develop a generative retrieval framework based on a large language model. This framework efficiently retrieves suitable semantic gesture candidates from a motion library in response to the input speech. To construct this motion library, we summarize a comprehensive list of commonly used semantic gestures based on findings in linguistics, and we collect a high-quality motion dataset encompassing both body and hand movements. We also design a novel GPT-based model with strong generalization capabilities to audio, capable of generating high-quality gestures that match the rhythm of speech. Furthermore, we propose a semantic alignment mechanism to efficiently align the retrieved semantic gestures with the GPT's output, ensuring the naturalness of the final animation. Our system demonstrates robustness in generating gestures that are rhythmically coherent and semantically explicit, as evidenced by a comprehensive collection of examples. User studies confirm the quality and human-likeness of our results, and show that our system outperforms state-of-the-art systems in terms of semantic appropriateness by a clear margin. We will release the code and dataset for academic research.

Publisher

Association for Computing Machinery (ACM)

Reference110 articles.

1. Style‐Controllable Speech‐Driven Gesture Synthesis Using Normalising Flows

2. Listen, Denoise, Action! Audio-Driven Motion Synthesis with Diffusion Models

3. Alibaba. 2009. Alibaba Cloud Automatic Speech Recognition. Accessed: 2023-12-15.

4. Rohan Anil Andrew M. Dai Orhan Firat Melvin Johnson Dmitry Lepikhin Alexandre Passos Siamak Shakeri Emanuel Taropa Paige Bailey Zhifeng Chen Eric Chu Jonathan H. Clark Laurent El Shafey Yanping Huang Kathy Meier-Hellstern Gaurav Mishra Erica Moreira Mark Omernick Kevin Robinson Sebastian Ruder Yi Tay Kefan Xiao Yuanzhong Xu Yujing Zhang Gustavo Hernandez Abrego Junwhan Ahn Jacob Austin Paul Barham Jan Botha James Bradbury Siddhartha Brahma Kevin Brooks Michele Catasta Yong Cheng Colin Cherry Christopher A. Choquette-Choo Aakanksha Chowdhery Clément Crepy Shachi Dave Mostafa Dehghani Sunipa Dev Jacob Devlin Mark Díaz Nan Du Ethan Dyer Vlad Feinberg Fangxiaoyu Feng Vlad Fienber Markus Freitag Xavier Garcia Sebastian Gehrmann Lucas Gonzalez Guy Gur-Ari Steven Hand Hadi Hashemi Le Hou Joshua Howland Andrea Hu Jeffrey Hui Jeremy Hurwitz Michael Isard Abe Ittycheriah Matthew Jagielski Wenhao Jia Kathleen Kenealy Maxim Krikun Sneha Kudugunta Chang Lan Katherine Lee Benjamin Lee Eric Li Music Li Wei Li YaGuang Li Jian Li Hyeontaek Lim Hanzhao Lin Zhongtao Liu Frederick Liu Marcello Maggioni Aroma Mahendru Joshua Maynez Vedant Misra Maysam Moussalem Zachary Nado John Nham Eric Ni Andrew Nystrom Alicia Parrish Marie Pellat Martin Polacek Alex Polozov Reiner Pope Siyuan Qiao Emily Reif Bryan Richter Parker Riley Alex Castro Ros Aurko Roy Brennan Saeta Rajkumar Samuel Renee Shelby Ambrose Slone Daniel Smilkov David R. So Daniel Sohn Simon Tokumine Dasha Valter Vijay Vasudevan Kiran Vodrahalli Xuezhi Wang Pidong Wang Zirui Wang Tao Wang John Wieting Yuhuai Wu Kelvin Xu Yunhan Xu Linting Xue Pengcheng Yin Jiahui Yu Qiao Zhang Steven Zheng Ce Zheng Weikang Zhou Denny Zhou Slav Petrov and Yonghui Wu. 2023. PaLM 2 Technical Report. arXiv:2305.10403 [cs.CL]

5. Rhythmic Gesticulator

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3