EL Embeddings: Geometric Construction of Models for the Description Logic EL++

Author:

Kulmanov Maxat1,Liu-Wei Wang1,Yan Yuan2,Hoehndorf Robert1

Affiliation:

1. Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

2. Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

An embedding is a function that maps entities from one algebraic structure into another while preserving certain characteristics. Embeddings are being used successfully for mapping relational data or text into vector spaces where they can be used for machine learning, similarity search, or similar tasks. We address the problem of finding vector space embeddings for theories in the Description Logic ??⁺⁺ that are also models of the TBox. To find such embeddings, we define an optimization problem that characterizes the model-theoretic semantics of the operators in ??⁺⁺ within ℝⁿ, thereby solving the problem of finding an interpretation function for an ??⁺⁺ theory given a particular domain Δ. Our approach is mainly relevant to large ??⁺⁺ theories and knowledge bases such as the ontologies and knowledge graphs used in the life sciences. We demonstrate that our method can be used for improved prediction of protein--protein interactions when compared to semantic similarity measures or knowledge graph embeddings.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embedding Two-View Knowledge Graphs with Class Inheritance and Structural Similarity;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Towards semantically enriched embeddings for knowledge graph completion;Neurosymbolic Artificial Intelligence;2024-08-21

3. Deep learning methods for protein function prediction;PROTEOMICS;2024-07-12

4. A Unified Review of Deep Learning for Automated Medical Coding;ACM Computing Surveys;2024-05-17

5. Dual Box Embeddings for the Description Logic EL ++;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3