Admissible Abstractions for Near-optimal Task and Motion Planning

Author:

Vega-Brown William1,Roy Nicholas1

Affiliation:

1. Massachusetts Institute of Technology

Abstract

We define an admissibility condition for abstractions expressed using angelic semantics and show that these conditions allow us to accelerate planning while preserving the ability to find the optimal motion plan.  We then derive admissible abstractions for two motion planning domains with continuous state.  We extract upper and lower bounds on the cost of concrete motion plans using local metric and topological properties of the problem domain.  These bounds guide the search for a plan while maintaining performance guarantees.  We show that abstraction can dramatically reduce the complexity of search relative to a direct motion planner.  Using our abstractions, we find near-optimal motion plans in planning problems involving 10^13 states without using a separate task planner.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating Long-Horizon Planning with Affordance-Directed Dynamic Grounding of Abstract Strategies;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Optimal Program Synthesis via Abstract Interpretation;Proceedings of the ACM on Programming Languages;2024-01-05

3. Multilevel motion planning: A fiber bundle formulation;The International Journal of Robotics Research;2023-11-09

4. Object Reconfiguration with Simulation-Derived Feasible Actions;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

5. Extracting generalizable skills from a single plan execution using abstraction-critical state detection;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3