Optimal Program Synthesis via Abstract Interpretation

Author:

Mell Stephen1ORCID,Zdancewic Steve1ORCID,Bastani Osbert1ORCID

Affiliation:

1. University of Pennsylvania, Philadelphia, USA

Abstract

We consider the problem of synthesizing programs with numerical constants that optimize a quantitative objective, such as accuracy, over a set of input-output examples. We propose a general framework for optimal synthesis of such programs in a given domain specific language (DSL), with provable optimality guarantees. Our framework enumerates programs in a general search graph, where nodes represent subsets of concrete programs. To improve scalability, it uses A * search in conjunction with a search heuristic based on abstract interpretation; intuitively, this heuristic establishes upper bounds on the value of subtrees in the search graph, enabling the synthesizer to identify and prune subtrees that are provably suboptimal. In addition, we propose a natural strategy for constructing abstract transformers for monotonic semantics, which is a common property for components in DSLs for data classification. Finally, we implement our approach in the context of two such existing DSLs, demonstrating that our algorithm is more scalable than existing optimal synthesizers.

Funder

NSF

Army Research Office

Amazon Web Services

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. 2020. Neurosymbolic reinforcement learning with formally verified exploration. Advances in neural information processing systems, 33 (2020), 6172–6183.

2. Binary Translation Using Peephole Superoptimizers;Bansal Sorav;OSDI.,2008

3. MIRIS: Fast Object Track Queries in Video

4. SkyQuery: an aerial drone video sensing platform

5. Optimizing synthesis with metasketches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3