Extracting Action Sequences from Texts Based on Deep Reinforcement Learning

Author:

Feng Wenfeng1,Zhuo Hankz Hankui1,Kambhampati Subbarao2

Affiliation:

1. School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

2. Department of Computer Science and Engineering, Arizona State University, Tempe, Arizona, US

Abstract

Extracting action sequences from texts is challenging, as it requires commonsense inferences based on world knowledge. Although there has been work on extracting action scripts, instructions, navigation actions, etc., they require either the set of candidate actions be provided in advance, or action descriptions are restricted to a specific form, e.g., description templates. In this paper we aim to extract action sequences from texts in \emph{free} natural language, i.e., without any restricted templates, provided the set of actions is unknown. We propose to extract action sequences from texts based on the deep reinforcement learning framework. Specifically, we view ``selecting'' or ``eliminating'' words from texts as ``actions'', and texts associated with actions as ``states''. We build Q-networks to learn policies of extracting actions and extract plans from the labeled texts. We demonstrate the effectiveness of our approach on several datasets with comparison to state-of-the-art approaches.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3