Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction

Author:

Dai Hengming1,Hu Xiangyun123,Shu Zhen1,Qin Nannan4,Zhang Jinming56ORCID

Affiliation:

1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

2. Hubei Luojia Laboratory, Wuhan 430079, China

3. Institute of Artificial Intelligence in Geomatics, Wuhan University, Wuhan 430079, China

4. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

5. Key Laboratory of Network Information System Technology, Institute of Electronic, Chinese Academy of Sciences, Beijing 100190, China

6. The Aerospace Information Research Institute, Chinese Academic of Sciences, Beijing 100190, China

Abstract

Ground filtering (GF) is a fundamental step for airborne laser scanning (ALS) data processing. The advent of deep learning techniques provides new solutions to this problem. Existing deep-learning-based methods utilize a segmentation or classification framework to extract ground/non-ground points, which suffers from a dilemma in keeping high spatial resolution while acquiring rich contextual information when dealing with large-scale ALS data due to the computing resource limits. To this end, we propose SeqGP, a novel deep-learning-based GF pipeline that explicitly converts the GF task into an iterative sequential ground prediction (SeqGP) problem using points-profiles. The proposed SeqGP utilizes deep reinforcement learning (DRL) to optimize the prediction sequence and retrieve the bare terrain gradually. The 3D sparse convolution is integrated with the SeqGP strategy to generate high-precision classification results with memory efficiency. Extensive experiments on two challenging test sets demonstrate the state-of-the-art filtering performance and universality of the proposed method in dealing with large-scale ALS data.

Funder

National Natural Science Foundation of China

Special Fund of Hubei Luojia Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference69 articles.

1. Estimating wildfire fuel consumption with multitemporal airborne laser scanning data and demonstrating linkage with MODIS-derived fire radiative energy;McCarley;Remote Sens. Environ.,2020

2. Mapping individual trees with airborne laser scanning data in an European lowland forest using a self-calibration algorithm;Kraszewski;Int. J. Appl. Earth Obs. Geoinf.,2020

3. Archaeological ground point filtering of airborne laser scan derived point-clouds in a difficult mediterranean environment;Doneus;J. Comput. Appl. Archaeol.,2020

4. Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer;Mezaal;Remote Sens.,2018

5. A revised progressive TIN densification for filtering airborne LiDAR data;Nie;Measurement,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilevel intuitive attention neural network for airborne LiDAR point cloud semantic segmentation;International Journal of Applied Earth Observation and Geoinformation;2024-08

2. Advancing Physically Informed Autoencoders for DTM Generation;Remote Sensing;2024-05-22

3. Large-Scale ALS Point Cloud Segmentation via Projection-Based Context Embedding;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Towards intelligent ground filtering of large-scale topographic point clouds: A comprehensive survey;International Journal of Applied Earth Observation and Geoinformation;2023-12

5. Integrating topographic features and patch matching into point cloud restoration for terrain modelling;International Journal of Digital Earth;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3