CSGNN: Contrastive Self-Supervised Graph Neural Network for Molecular Interaction Prediction

Author:

Zhao Chengshuai1,Liu Shuai1,Huang Feng1,Liu Shichao1,Zhang Wen1

Affiliation:

1. College of Informatics, Huazhong Agricultural University, Wuhan, China

Abstract

Molecular interactions are significant resources for analyzing sophisticated biological systems. Identification of multifarious molecular interactions attracts increasing attention in biomedicine, bioinformatics, and human healthcare communities. Recently, a plethora of methods have been proposed to reveal molecular interactions in one specific domain. However, existing methods heavily rely on features or structures involving molecules, which limits the capacity of transferring the models to other tasks. Therefore, generalized models for the multifarious molecular interaction prediction (MIP) are in demand. In this paper, we propose a contrastive self-supervised graph neural network (CSGNN) to predict molecular interactions. CSGNN injects a mix-hop neighborhood aggregator into a graph neural network (GNN) to capture high-order dependency in the molecular interaction networks and leverages a contrastive self-supervised learning task as a regularizer within a multi-task learning paradigm to enhance the generalization ability. Experiments on seven molecular interaction networks show that CSGNN outperforms classic and state-of-the-art models. Comprehensive experiments indicate that the mix-hop aggregator and the self-supervised regularizer can effectively facilitate the link inference in multifarious molecular networks.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3