Deep graph contrastive learning model for drug-drug interaction prediction

Author:

Jiang Zhenyu,Gong Zhi,Dai XiaopengORCID,Zhang Hongyan,Ding Pingjian,Shen CongORCID

Abstract

Drug-drug interaction (DDI) is the combined effects of multiple drugs taken together, which can either enhance or reduce each other’s efficacy. Thus, drug interaction analysis plays an important role in improving treatment effectiveness and patient safety. It has become a new challenge to use computational methods to accelerate drug interaction time and reduce its cost-effectiveness. The existing methods often do not fully explore the relationship between the structural information and the functional information of drug molecules, resulting in low prediction accuracy for drug interactions, poor generalization, and other issues. In this paper, we propose a novel method, which is a deep graph contrastive learning model for drug-drug interaction prediction (DeepGCL for brevity). DeepGCL incorporates a contrastive learning component to enhance the consistency of information between different views (molecular structure and interaction network), which means that the DeepGCL model predicts drug interactions by integrating molecular structure features and interaction network topology features. Experimental results show that DeepGCL achieves better performance than other methods in all datasets. Moreover, we conducted many experiments to analyze the necessity of each component of the model and the robustness of the model, which also showed promising results. The source code of DeepGCL is freely available at https://github.com/jzysj/DeepGCL.

Funder

Research Foundation of Hunan Educational Committee

Hunan Province Higher Education Reform Research Project

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference64 articles.

1. Trends in phase ii trials for cancer therapies;F Azam;Cancers,2021

2. Drug–drug interactions with warfarin: A systematic review and meta-analysis;M Wang;British journal of clinical pharmacology,2021

3. Large-scale exploration and analysis of drug combinations;P Li;Bioinformatics,2015

4. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways;J Tang;PLoS computational biology,2013

5. A hadoop-based method to predict potential effective drug combination;Y Sun;BioMed research international,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3