Demystifying the Combination of Dynamic Slicing and Spectrum-based Fault Localization

Author:

Reis Sofia12,Abreu Rui12,d'Amorim Marcelo3

Affiliation:

1. IST, University of Lisbon, Portugal

2. INESC-ID, Portugal

3. Federal University of Pernambuco, Brazil

Abstract

Several approaches have been proposed to reduce debugging costs through automated software fault diagnosis. Dynamic Slicing (DS) and Spectrum-based Fault Localization (SFL) are popular fault diagnosis techniques and normally seen as complementary. This paper reports on a comprehensive study to reassess the effects of combining DS with SFL. With this combination, components that are often involved in failing but seldom in passing test runs could be located and their suspiciousness reduced. Results show that the DS-SFL combination, coined as Tandem-FL, improves the diagnostic accuracy up to 73.7% (13.4% on average). Furthermore, results indicate that the risk of missing faulty statements, which is a DS?s key limitation, is not high ? DS misses faulty statements in 9% of the 260 cases. To sum up, we found that the DS-SFL combination was practical and effective and encourage new SFL techniques to be evaluated against that optimization.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Localization Using TrustRank Algorithm;Applied Sciences;2023-11-15

2. Software Fault Localization: an Overview of Research, Techniques, and Tools;Handbook of Software Fault Localization;2023-04-20

3. On The Efficiency Of Combination Of Program Slicing and Spectrum-Based Fault Localization;2023 IEEE Conference on Software Testing, Verification and Validation (ICST);2023-04

4. Fault localization via efficient probabilistic modeling of program semantics;Proceedings of the 44th International Conference on Software Engineering;2022-05-21

5. A Survey of Challenges in Spectrum-Based Software Fault Localization;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3