Fault Localization Using TrustRank Algorithm

Author:

Fan Xin123,Wu Kaisheng23,Zhang Shuqing23,Yu Li1,Zheng Wei23,Ge Yun23

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. School of Software, Nanchang Hangkong University, Nanchang 330063, China

3. Software Testing and Evaluation Center, Nanchang Hangkong University, Nanchang 330063, China

Abstract

Spectrum-based fault localization (SBFL), a widely recognized technique in automated fault localization, has limited effectiveness due to its disregard for the internal information of the program under test suites. To overcome this limitation, a novel TrustRank-based fault localization (TRFL) technique is introduced. TRFL enhances traditional SBFL by incorporating internal data dependencies of the program under the test suite, thereby providing a more comprehensive analysis. It constructs a node-weighted program execution network and employs the TrustRank algorithm to analyze network centrality and re-rank program entities based on their suspiciousness. Furthermore, a bidirectional TrustRank algorithm (Bi-TRFL) is extended that takes into account the influence relationship between network nodes for more accurate fault localization. When applied to large-scale datasets with real faults, such as Defects4J, TRFL, and Bi-TRFL, it significantly outperforms traditional SBFL methods in fault localization. They demonstrate up to 40% and 13% improvement in Top-1 and Top-5 rankings, respectively, proving their robustness and efficiency with minimal sensitivity to related parameters.

Funder

The National Natural Science Foundation of China

the Youth Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3