Unobserved Is Not Equal to Non-existent: Using Gaussian Processes to Infer Immediate Rewards Across Contexts

Author:

Azizsoltani Hamoon1,Kim Yeo Jin1,Ausin Markel Sanz1,Barnes Tiffany1,Chi Min1

Affiliation:

1. North Carolina State University

Abstract

Learning optimal policies in real-world domains with delayed rewards is a major challenge in Reinforcement Learning. We address the credit assignment problem by proposing a Gaussian Process (GP)-based immediate reward approximation algorithm and evaluate its effectiveness in 4 contexts where rewards can be delayed for long trajectories. In one GridWorld game and 8 Atari games, where immediate rewards are available, our results showed that on 7 out 9 games, the proposed GP-inferred reward policy performed at least as well as the immediate reward policy and significantly outperformed the corresponding delayed reward policy. In e-learning and healthcare applications, we combined GP-inferred immediate rewards with offline Deep Q-Network (DQN) policy induction and showed that the GP-inferred reward policies outperformed the policies induced using delayed rewards in both real-world contexts.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-aware deep reinforcement learning with multi-temporal abstraction;Applied Intelligence;2023-03-25

2. The Impact of Batch Deep Reinforcement Learning on Student Performance: A Simple Act of Explanation Can Go A Long Way;International Journal of Artificial Intelligence in Education;2022-11-28

3. InferNet for Delayed Reinforcement Tasks: Addressing the Temporal Credit Assignment Problem;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

4. Multi-Temporal Abstraction with Time-Aware Deep Q-Learning for Septic Shock Prevention;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

5. To Reduce Healthcare Workload: Identify Critical Sepsis Progression Moments through Deep Reinforcement Learning;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3